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Abstract. For w-legged antiferromagnetic spin-1/2 Heisenberg ladders, a long-range spin pairing order can
be identified which enables the separation of the space spanned by finite-range (covalent) valence-bond
configurations into w + 1 subspaces. Since every subspace has an equivalent counter subspace connected
by translational symmetry, twofold degeneracy, breaking translational symmetry is found except for the
subspace where the ground state of w = even belongs to. In terms of energy ordering, (non)degeneracy
and the discontinuities introduced in the long-range spin pairing order by topological spin defects, the
differences between even and odd ladders are explained in a general and systematic way.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.10.Jm Quantized spin models

1 Introduction

The discovery, about a decade ago, of high-Tc supercon-
ductivity [1] in lightly doped “two dimensional” antifer-
romagnets and materials (initially) supposed to contain
coupled spin chains [2–4], have generated a renewed in-
terest on low dimensional quantum spin-1

2 systems. One
of the concerns is the non-smooth crossover from one-
dimensional to two-dimensional systems (see, for instance,
Ref. [5] and references therein). This fact has also been
pointed out earlier in references [6–9] for different sets of
long polymeric strips with graphite as the final member of
these series, paralleling that of the square-lattice family.
Both theoretical and experimental studies [5,10–12] sug-
gest that the nature of antiferromagnetic spin- 1

2 ladders
with w = even legs differs from that of w = odd lad-
ders. For instance, w = even ladders are gapped systems,
the gap vanishing exponentially with w, while w = odd
ladders display characteristics similar to one-dimensional
spin- 1

2 systems, namely they are gapless, with a doubly
degenerate ground state, breaking translational symmetry
[10,13,14]. Furthermore, spin defects are confined in lad-
ders with w = even but they are not if w = odd. Numerical
results [15] indicate that, in the infinite limit, the ground
state of the two dimensional system, towards w = even
and w = odd series must converge to, has long-range an-
tiferromagnetic order and gapless excitations.

In this paper we will consider antiferromagnetic quan-
tum spin- 1

2 ladders with w legs, (even) L → ∞ rungs,
free boundary conditions in the inter-chain direction, and

a e-mail: angels@hermes.ffn.ub.es

translational symmetry in the chain direction. It is as-
sumed that the Hamiltonian appropriate to describe these
systems contains only short-range interactions preserving
the total spin of the system. At half filling, we assume that
the Hamiltonian which governs the lowest-lying region of
the spectrum is the spin- 1

2 antiferromagnetic Heisenberg
Hamiltonian,

H =
∑
ni,mj

Jni,mjSni · Smj , (1)

where Sni is the spin operator for spin on site ni, n in-
dicating the rung and i the leg, and the Jni,mj are the
exchange-coupling parameters. The Jni,mj are assumed to
decrease very rapidly with distance, the nearest-neighbour
Heisenberg Hamiltonian with isotropic J being the domi-
nant part of H.

Since the ground state of such a Hamiltonian for a bi-
partite system with equal number of sites in the two parts
is known to be a singlet [16], resonating-valence-bond-type
wave functions are defined in the space spanned by M -
range (covalent) valence-bond (VB) configurations, with
arbitrarily large but finite M . We refer to this space as
model space, Hw. The reasonableness of Hw is based on
the fact that the dimer-covering configurations (or Kekulé
structures [17], as have always been termed in Resonance
Theory) are the lowest-lying monoconfigurational singlets.
Thus, they provide a good zero-order picture. Then, on
applying the Hamiltonian H, it can be noticed that the
nearness of spin pairing tends to be preserved. When H is
restricted to the isotropic nearest-neighbour spin- 1

2
Heisenberg Hamiltonian the shorter-range RVB picture
should apply best for small even w, while w = odd or
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wide even w ladders are expected to require long-range
RVB pictures [18,19]. For instance, M -range RVB pic-
tures neglect corrections lying higher than the M order in
Perturbation Theory and have to be considered with cau-
tion. Nevertheless, additional terms in the Hamiltonian,
as frustration, are expected to stabilise the finite-range
RVB wave functions with respect to other Néel-based an-
sätze (see [20] and references therein). In addition, there
exist finite-range Heisenberg models for which short-range
Kekulé structures are exact ground states and also short-
range RVB ansätze certainly apply for so-called “bond-
dimer” models (see, for instance, [21–25]).

In order to separate the model space Hw into non-
mixing different subspaces, several attempts have been
made to find associated topological quantum numbers.
For instance, the occurrence of a topological long-range
order (LRO) was first discussed [26] to rationalise the
ground-state instability to bond alternation in spin-1/2
linear Heisenberg chains. Simultaneously, this LRO has
also been discussed in the context of applications to conju-
gated hydrocarbons [6–8,27]. Latter, Klein et al. [28] and
independently Thouless [29] introduced the gap or reso-
nance parity, and Kivelson et al. [30] and Sutherland [31],
defined the winding number. These numbers allow the sep-
aration of the short-range VB states for odd-width strips
in two subsets leading to degeneracy [32,33]. The rela-
tion between topological LRO and winding numbers is
given in reference [33]. Also, in reference [33], a resonance
quantum number , Dn, which specifies the local (at bound-
ary n) array of singlets, has been defined for VB systems
with bipartitioning conditions. Still, arguments based on
a topological LRO have been applied to the qualitative
analysis of distortions, excitations and their coupling for
square-lattice strips [18] and, more quantitatively, to dif-
ferent polymers [34,35]. More recently, simple topological
effects in short-range RVB were also predicated in refer-
ences [19,36] for coupled Heisenberg Chains, based on nu-
merical results from density matrix renormalization group
(DMRG) techniques on clusters.

Our purpose in this paper is to show that for anti-
ferromagnetic quantum spin- 1

2 ladders a long-range spin-
pairing order (LR-SPO) associated with the resonance
quantum number Dn can be defined. This LR-SPO allows
to separate the model space Hw into w + 1 subspaces.
Configurations belonging to mutually different subspaces
should differ repeatedly on each of the L rungs of the lad-
der. Then, they are asymptotically orthogonal, and never
mix by applying a few-particle operator.

The energy ordering among the lowest-lying state
in every subspace is estimate by the dimer-covering-
counting approximation [6,37,38]. Counting the dimer-
covering configurations has been achieved by a transfer-
matrix technique (see, i.e., Refs. [34,35] and references
therein). Also, since every subspace has an equivalent
counter subspace connected by translational symmetry,
twofold degeneracy is naturally obtained except for the
subspace including the ground state of w = even ladders,
irrespective of the details of any Hamiltonian preserv-
ing translational symmetry. Furthermore, in the present

paper it is shown that a topological spin defect introduces
a discontinuity in the LR-SPO, except for the ground state
ofw = even ladders. Then, understanding energy ordering,
degeneracy, and the discontinuities introduced in the LR-
SPO by topological spin defects, allow a general and sys-
tematic explanation of the differences between even and
odd ladders.

This paper is organised as follows: In Section 2 we
show that the (covalent) VB configurations have a LR-
SPO, which allows the separation of the model space in
different (asymptotically orthogonal and non-interacting)
subspaces. In Section 3 the energy of the lowest lying state
in every subspace is estimated within the dimer-covering-
counting approximation. In Section 4 we obtain the dis-
continuity in the LR-SPO associated to the presence of
a topological spin defect. In Section 5 the results are pre-
sented and discussed. Finally, the conclusions are collected
in Section 6.

2 Singlets and long-range spin-pairing order

Quantum spin- 1
2 ladders with N = w×L sites, with (even)

L→∞ and free boundary conditions along the interchain
direction, are bipartite system with a singlet ground state.
Therefore, the ground state can be written as a weighted
superposition of a non-orthogonal complete basis set of
singlets, |si〉, i = 1 to dN ,

dN =
N !

(N/2 + 1)!(N/2)!
· (2)

In a bipartite system, sublatticesA and B (starred) can be
identified and a set of dN independent singlets can be con-
structed by pairing to a singlet each of the N/2 spins in A
to a spin inB. We represent one of these spin-pairings (SP)
by an arrow from the site in the sublattice A to its part-
ner in B (see, for instance, Fig. 1, where a complete set of
linearly-independent singlets for six-site systems are rep-
resented). Overlap, 〈si|sj〉, and matrix elements, 〈si|H|sj〉
can be evaluated using the Pauling’s [17,39] superposition
rules.

For the sake of simplicity, we first introduce the LR-
SPO of VB configurations defining the (local, at boundary
n) resonance quantum numbers, Dn, when boundaries are
chosen to run parallel to rungs, and the model space is
restricted to the dimer-covering approximation. Later we
show that the inclusion of longer pairings and/or using
more general boundaries does not spoil this LR-SPO. The
only effect of selecting boundaries of a different shape is
changing the origin of the LR-SPO parameter. Finally, in
this section, we discuss the consequences of the LR-SPO
on the eigenstates of H and their degeneracy.

2.1 Dimer-covering model-space approximation

For any Kekulé structure, let us define P+
n (P−n ) as the

number of arrows pointing to the right (left) across a
boundary, fn, lying midway between rungs n and n + 1
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Fig. 1. A complete set of linearly independent (covalent) sin-
glets for a six-sites system: a) 1× 6; b) 2× 3.

(see Fig. 2), and In as the number of SP with both sites
in the rung n,

In = 0, 1, . . .
w − b

2
, (3)

where

b ≡
{

0, w = even,
1, w = odd. (4)

If wAn (wBn ) is the number of sites belonging to the
intersection of rung n and sublattice A (B), it can be
easily seen that

wAn = P−n−1 + P+
n + In,

wBn = P+
n−1 + P−n + In. (5)

Choosing A and B sublattices according to

wA0 − wB0 = b, (6)

2 3 2 3 2
Fig. 2. A fragment of a w = 9 ladder, showing (inside
a circle) the value of Dn at each boundary fn. Note that
Dn = Dn−1 + (−1)nb (sublattices A and B are selected as
wAn − wBn = (−1)nb).

it can be written

wAn =
1
2

[w + (−1)nb] ,

wBn =
1
2

[w − (−1)nb] . (7)

Substracting equations (5) and using equations (7)

P−n−1 − P+
n−1 + P+

n − P−n = wAn − wBn = (−1)nb. (8)

Defining the resonance quantum number Dn at boundary
fn as

Dn ≡ P+
n − P−n , (9)

we obtain

Dn = Dn−1 + (−1)nb. (10)

Then a SPO parameter D ≡ D0 can be associated to any
dimer-covering configuration, so that

Dn = D − 1
2

[1− (−1)n] b. (11)

Since

P+
n = 0, 1, . . .wAn ,

P−n = 0, 1, . . .wBn , (12)

D can take w + 1 different values,

D =
w + b

2
,
w + b− 2

2
, . . . ,

b− w
2

, (13)

and the (dimer-covering) model space can be partitioned
in w + 1 subspaces, HwD, according to the value of D.
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2.2 General formulation of the LR-SPO

The LR-SPO and D introduced above have been re-
lated, for the sake of simplicity, exclusively to dimer-
covering configurations and to boundaries running par-
allel to rungs. Now we remove these restrictions. We will
see that the shape of the boundaries limiting fragments of
the ladder or the inclusion of long-range spin-pairings is
irrelevant and that the LR-SPO can still be defined.

The dimer-covering model space is not invariant under
the Hamiltonian operator. For instance, the XY terms,
S±niS

∓
mj, of the nearest-neighbour Heisenberg Hamiltonian

acting on a Kekulé structure yield singlets with SP be-
tween sites up to 3 bonds apart (see Fig. 3). Then, as
a first step, linearly independent singlets with 3-bond-
range (3BR) SP should be incorporated into Hw to go
beyond the dimer-covering approximation. These 3BR-SP
states allow sites in A-sublattice to be SP to sites in B-
sublattice no more than 3 bonds apart. These states can
be directly generated by the “re-coupling” [34,35] of two
simply neighbouring dimers, i.e. unlinked bond-pairs with
one and only one site in a pair being a nearest neighbour
to a site in the other pair. It is worth noting that these
re-couplings satisfy the non-crossing rules. Then, the 3BR-
SP model subspace incorporates any singlet obtained from
a dimer-covering singlet allowing an arbitrary number of
unlinked re-couplings of two simply neighbouring bond-
pairs. Still longer-range model spaces can be obtained al-
lowing 5BR-SP, 7BR-SP, . . . , to be included in Hw. See,
for instance, Figure 4 where a fragment of a ladder show-
ing longer range SP is represented. Nevertheless, singlets
with very long bond-range SP should contribute less, so
a reasonable model space will be that including singlets
with SP up to M bonds apart, M not necessarily small.

Let us now also allow the boundary fgn to be a line
running from one side of the ladder to the other side, with
n1 being the first site to the left of fgn in leg 1. We assume
that fgn can go up and down, but it is self-avoiding and is
not hitting any site. Thus, fgn must unambiguously break
up the ladder in two regions: left region, Ln, and right
region, Rn (see Fig. 5). Therefore, two non-intersecting
boundaries, fgn and fgm, n < m, define a fragment, F gn,m,
as the intersection of Rn and Lm.

We define P g+n (P g−n ) as the number of arrows pen-
etrating the boundary fgn with the arrowhead in the Rn
(Ln) region. Ign,m is the number of arrows with both ends
in F gn,m. lgn,m (rgn,m) is the number of arrows starting in
Rm (Ln) and with the arrowhead in Ln (Rm), i.e. with
no partner belonging to F gn,m. Finally, F gAn,m (F gBn,m) is the
number of sites belonging to the intersection of F gn,m and
sublattice A (B). Then

P g−n − lgn,n+p + P g+n+p − r
g
n,n+p + Ign,n+p = F gAn,n+p,

P g+n − rgn,n+p + P g−n+p − l
g
n,n+p + Ign,n+p = F gBn,n+p. (14)

Subtracting these two equations we obtain

Dg
n+p −Dg

n = F gAn,n+p − F gBn,n+p, (15)

Fig. 3. A dimer-covering configuration is an eigenstate of
Sj · Sk when sites j and k are spin-paired. The “off-diagonal”
singlet with (i, l∗) and (k, j∗) pairings is also obtained when
Sj · Sk acts on a VB configuration with spin-pairings (i, j∗)
and (k, l∗).

2 1 2 1 2 1 2 11
Fig. 4. A fragment of a w = 7 ladder, showing (inside a circle)
the value of Dn at each boundary fn. Note that still Dn =
Dn−1 +(−1)nb (sublattices A and B are selected as wAn −wBn =
(−1)nb), although here there are longer-range spin-pairings.

with

Dg
n ≡ P g+n − P g−n , (16)

Let us analyze F gn,n+p leg by leg. From Figure 5, it is
readily seen that

F gAn,n+2j − F
gB
n,n+2j = 0,

F gAn,n+2j+1 − F
gB
n,n+2j+1 ≡ −bgn, (17)

where j is a positive integer with the restriction fgn and
fgn+2j do not intersect, and bgn = bgn+2 for any n. Then,
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(a)

(b)

Fig. 5. Portion of a ladder showing boundaries fgn and fgm
which go up and down: a) m−n = even; b) m−n = odd. These
non-intersecting boundaries define a fragment of the ladder
(the set of sites with a full dot or star), F gn,m, as the intersection
of Rn and Lm. Analysing the fragment a leg at time, it is worth
noting a series of facts: First, there are m − n sites in each
leg. Also, whenever a site qi belongs to F gn,m, neither the site
Tm−nqi nor the site T−m+nqi (qi translated m−n steps to the
right or to the left) are included in the fragment. Furthermore,
in (a), Tm−nqi remains in the same sublattice than qi while, on
the contrary, in (b), Tm−nqi belongs to a different sublattice
than qi. Finally and more important, in (a) half of the m− n
sites belong to the sublattice A and the other belong to the B
sublattice, while in (b) the fragment has different number of
sites in the sublattice A than in the sublattice B.

choosing n = 0,

Dg
2j −D

g
0 = 0,

Dg
2j+1 −D

g
0 = −bg0. (18)

Again it follows that a SPO parameter Dg ≡ Dg
0 can be

associated to any VB configuration, so

Dg
n = Dg − 1

2
[1− (−1)n] bg, (19)

with bg ≡ bg0.
The general order parameter Dg can be related to the

previous one, D, in a simple way. For simplicity, without
loss of generality, let us consider the fragment F0,2j lim-
ited by fg0 and f2j , j > 0. We select j in such a way that as
fg0 and f2j do not intersect. IF is the number of SP with
both sites in F0,2j ; lF (rF ) is the number of arrows con-
necting an A site in R2j (L0) to a B site in L0 (R2j), and

FA0,2j (FB0,2j) is the number of sites belonging to the inter-
section of F0,2j and sublattice A (B). Then

P g−0 − lF + P+
2j − rF + IF = FA0,2j ,

P g+0 − rF + P−2j − lF + IF = FB0,2j . (20)

Subtracting these two equations

−Dg +D2j = FA0,2j − FB0,2j . (21)

Using equation (19) we obtain

Dg = D −
(
FA0,2j − FB0,2j

)
, (22)

which is independent of j, provided it is not too small
to prevent fg0 and f2j are intersecting. Thence, there is
a one to one correspondence between allowed values of
Dg and D.

2.3 LR-SPO of eigenstates and degeneracy

So far, we have separated the model space in w + 1 sub-
spaces. At this point we note that two singlets from dif-
ferent subspaces must be different repeatedly at every po-
sition along the ladder. Therefore, according to Pauling’s
island-counting technique [17,39], they are asymptotically
orthogonal and non interacting via any interaction medi-
ated by a few-particle operator. Then the matrix of the
Hamiltonian asymptotically block-diagonalises, so config-
urations belonging to different subspaces do not mix in
the configuration-interaction sense. Thus D may be taken
as a long-range order parameter labelling the eigenstates
ΨD of the D block.

Furthermore, HwD and Hwb−D subspaces are equivalent
by a translation T of one rung along the legs. Then,

TΨD = Ψb−D. (23)

Consequently, degeneracy is always expected to occur, ex-
cept for D = 0 and w = even, i.e. b = 0.

3 Energy ordering

Within the dimer-covering approximation the resonance
energy in units of J , Nεr(w,D), i.e. the ground-state en-
ergy correction below the energy of a single Kekulé struc-
ture (−0.375N), depends on the configuration interaction
amongst the different Kekulé structures. It has been ar-
gued [6,38] that one might consider this energy lowering
to depend solely on the dimension of the space spanned
by the appropriate Kekulé structures. Let n(w,D) be the
dimension of the D block for a w-legged ladder. Since
n(w,D) is multiplicative in terms of a break up into sub-
systems while the energy is additive, such a functional
dependence should be of the form

εr(w,D) ≈ −CJ
wL

lnn(w,D), (24)
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where C is a fitting parameter independent of the struc-
ture to some degree, and in particular presumed to be
(at least asymptotically for large w) the same for all w-
legged ladders. For energy-ordering purposes the value of
C is irrelevant. Nevertheless, for the nearest-neighbour
isotropic Heisenberg model the value of C have been de-
termined for a class of benzenoid hydrocarbons [6] (with
C = 0.5667) and for finite square-lattice fragments [38]
(with C = 0.75), by fitting the logarithm of the Kekulé-
structure count to the resonance energy calculated from
an equally-weighted Kekulé-structure wave function.

Arguments supporting equation (24) relay on the fact
that the energy is an extensive magnitude, i.e. scales as
the system size, while the number of Kekulé structures
needs to scale exponentially with the system size. Then, C
may be determined by fitting the logarithm of the Kekulé-
structure count to better estimates to the energy than
those used in references [6,38]. As a first attempt to do
so, we obtain Cw = 0.84, 1.0 and 0.93 appropriate for
square-lattice strips with L → ∞ and w = 2, 3 and 4,
respectively, when the “exact” energy values of Table 2
in reference [38] have been used. The weighted average of
them could be used as a rough estimate of C appropriate
for the two-dimensional square lattice. Assuming that the
error of Cw typically behaves as 1/w, we obtain C = 0.94±
0.19, although a more reliable value would be desirable.

The values of n(w,D) can be easily obtained (see the
Appendix) as the L/2 power of the highest eigenvalue,
Λ2
wD, of the D block of the square of a dimer-covering-

counting transfer matrix T 2
D. Then, the resonance energy

of the lowest lying state in the subspace D can be written
as

εr(w,D) ≈ −CJ
w

lnΛwD. (25)

4 Topological spin defects and LR-SPO

Let us now suppose that there is a topological spin defect
on site i of rung n, i.e. for any reason the site ni remains
not spin-paired,

ni ∈
{
A, n+ i = odd,
B, n+ i = even. (26)

Then, choosing boundaries parallel to rungs, equa-
tions (14) become

wAn = P−n−1 − l + P+
n − r + In +

1
2
[
1− (−1)n+i

]
wBn = P+

n−1 − r + P−n − l+ In +
1
2
[
1 + (−1)n+i

]
(27)

and the recurrence relation across the rung n with a topo-
logical spin defect on site ni is

Dn = Dn−1 + (−1)n
[
b+ (−1)i

]
. (28)

If the order parameter to the left of the spin defect is Dl,
according to equation (11), the order parameter to the
right of site ni, Dr, will be

Dr = Dl + (−1)n+i. (29)

Then, a topological spin defect can be seen as a domain
wall separating sectors with order parameters Dl and Dr.

Furthermore, since the subspaces D and b−D are de-
generate, the energy per site associated to the sectors to
the right and to the left of a spin defect located at the ni
site will be degenerate if

Dl =
1
2
[
b− (−1)n+i

]
. (30)

This equation has a solution only when b = 1, i.e. w is
odd, and Dl = 0 (with Dr = 1) or Dl = 1 (with Dr = 0).

Furthermore, it is possible to form a local region be-
tween rungs n and m of LR-SPO D ± 1 placing two spin
defects in a wave function of LR-SPO D, one in a site ni
and the other in a site mj, with n+ i+m+ j = odd.

5 Results and discussion

Considering that w-legged (even) L → ∞ antiferromag-
netic spin- 1

2 Heisenberg ladders are bipartite systems with
singlet ground state, we have assumed that their ground
state is described by an RVB many-body wave-function
ansätze within the space spanned by the M -range (co-
valent) valence-bond configurations, Hw, with arbitrarily
large M � L.

We have shown that any (covalent) VB configuration
exhibits a LR-SPO. This LR-SPO is characterised by a
parameter D, which can take w + 1 different values, and
allows to specify the local (at boundary) array of spin-
pairings penetrating the boundary n, for any n. The shape
of the boundary selected to define D is quite arbitrary: it
can go up and down, but it is self-avoiding and is not
hitting any site, so it is able to break up the ladder in two
(non-longitudinal) parts. When the boundary is chosen to
be parallel to the rungs, the allowed values of D are:

D =
w + b

2
,
w + b− 2

2
, . . . ,

b− w
2

, (31)

where b is zero (one) for w = even (odd). Choosing another
boundary, the values of D simply change by a boundary-
dependent integer.

This long-range spin-pairing-order allows to separate
Hw in w+1 subspaces,HwD. Two configurations in different
HwD differ repeatedly on each of the L rungs of the ladder.
Consequently, they are asymptotically orthogonal and non
interacting via any interaction mediated by a few-particle
operator. Thence, the matrix of the Hamiltonian asymp-
totically block-diagonalises. Thus, the eigenstates of H do
not mix configurations with different value of D. There-
fore, D may be taken to be a long-range order parameter
labelling the eigenstates of the D block. This gives rise to
w + 1 RVB Anzätze exhibiting different LR-SPO, ΨD. It
is also worth noting that asymptotic strong orthogonality
and LR-SPO in RVB wave functions persist with a long
finite cut-off.

Furthermore, subspaces HwD and Hwb−D are equivalent
by a translation of one rung along the legs, T . Then

TΨD = Ψb−D, (32)
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Table 1. The absolute value of the resonance energy in units of
C, (lnΛD)/w, for the lowest lying state of subspaces with order
parameters from D = 0 to (w + b)/2, and the extrapolations
to w→∞ for the lowest lying subspace of both, the w = even
and w = odd, series.

D 0 1 2 3 4 5 6
w

 1 0. 0.

 3 0.2195 0.2195 0.

 5 0.2529 0.2529 0.1567 0.

 7 0.2656 0.2656 0.2121 0.1181 0.

 9 0.2721 0.2721 0.2383 0.1762 0.0940 0.

11 0.2760 0.2760 0.2527 0.2090 0.1491 0.0799 0.

∞ 0.2920

 2 0.2426 0.

 4 0.2610 0.1849 0.

 6 0.2699 0.2331 0.1349 0.

 8 0.2748 0.2532 0.1930 0.1048 0.

10 0.2778 0.2637 0.2332 0.1617 0.0852 0.

12 0.2800 0.2700 0.2410 0.1959 0.1382 0.0717 0.

∞ 0.2913

and the energy of the corresponding wave functions
must be

ED = Eb−D. (33)

Thus degeneracy is always predicted to occur, except for
w = even and D = 0, irrespective of the details of any
Hamiltonian preserving translational symmetry.

We have obtained the values of ΛwD of Section 3 for w
ranging from one to twelve and D from b to (w + b)/2.
Table 1 summarises the zero order resonance energies
εr(w,D), in units of C, calculated by using equation (25).
Since it is unlikely that the zero-order energies are dras-
tically modified by the small corrections to the isotropic
nearest-neighbour Heisenberg Hamiltonian, we expect an
energy ordering

Eb < Eb+1 < · · · < E 1
2 (w+b). (34)

Therefore, for w = even, the ground state belongs to the
non-degenerate D = 0 subspace, with

TΨ0 = Ψ0, (35)

while, for w = odd, the ground-state manifold is spanned
by Ψ0 and Ψ1, which are eigenstates of H, but not of T .
The eigenstates Φ± of the translation operator, are defined
in the ground-state manifold,

Φ± ≡
1√
2

(Ψ0 ± Ψ1) , (36)

so

TΦ± = ±Φ±. (37)

with k = 0 and k = π. This RVB asymptotic degener-
acy for w = odd is consistent with a very wide body of
evidence.

It could be argued that the true ground state of
the spin- 1

2 nearest-neighbour Heisenberg Hamiltonian for

Table 2. Parameters of the equation (38), which fits the
ground-state (D = 0) resonance energy, in units of C, for the
w = even and w = odd series and their weighted average.

w=even w=odd weighted average

εr(∞,0)/C −0.29133 ± 0.00026  −0.29203 ± 0.00031  −0.2916 ± 0.0002

 a1   0.14326    0.16059 −

 a2 −0.08378    0.17130 −

w = 1 and L → ∞ should be described in terms of
two degenerate subspaces, in order to regain the non-
degenerate and gapless Bethe Ansatz state. For finite
(even) L with cyclic boundary conditions the two degen-
erate RVB wave functions do interact, in the configuration
interaction sense, giving a splitting of the translationally-
adapted states Φ± (with k = 0 and k = π), which leads to
a non-degenerate ground state. Thus, for finite L, restric-
tion to just one subspace does not yield a true ground
state. Nevertheless, when the splitting is examined as a
function of L, it is seen that the gap closes at least as
fast as 1/L and the states Φ± approach to an acciden-
tal degeneracy. This feature is basically related with the
dimerizing instability of the Bethe ansatz state. For in-
stance, if a small dimerizing interaction occurs, then the
accidental degeneracy of equation (33) no longer holds.
Therefore, either Ψ0 or Ψ1 will be lower in energy and
completely dominate the wave function, leading to a spin-
Peierls broken-symmetry ground state [26].

The w→∞ limit is obtained by fitting εr(w, 0)/C by
a power series in 1/w,

εr(w, 0)
C

≈ εr(∞, 0)
C

+
a1

w
+
a2

w2
· (38)

In Table 2 the values of εr(∞, 0)/C, a1 and a2 are col-
lected for both w = even and w = odd, along with their
weighted average for εr(∞, 0)/C. For the purpose of see-
ing how reasonable this simple model is, a value of C is
needed. When C is fitted to dimer-covering estimates of
the energy for square-lattice fragments, the value 0.75 is
obtained [38]. Using this value of C, the present simple
model predicts an energy per site of ≈ −0.594 (in unit of
J), in good agreement with the value −0.604 calculated
at the same level by Liang, Doucot and Anderson [40].
When C is evaluated as the weighted average of the Cw,
w = 2, 3 and 4, derived from the “exact” estimates of
the energy of Zivkovic et al. [38] (see Sect. 3) we obtain
C = 0.94±0.19. Obviously, a more reliable C value would
be desirable. Using this value of C, an energy per site of
≈ −0.65± 0.10 (in unit of J) is obtained, which also com-
pares fairly well with the best estimate (−0.668) of Liang,
Doucot and Anderson [40].

We have shown that a topological spin defect, i.e. a
non-paired site, can be seen as a domain wall separating
two sectors of the ladder with order parametersDl and Dr

Dr = Dl + (−1)n+i. (39)
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Furthermore, the energy per site associated to the right
and to the left sectors of the spin defect will be degenerate
only when b = 1, i.e. w is odd, and Dl = 0 (with Dr = 1)
orDl = 1 (with Dr = 0). Also, it is possible to form a local
region between rungs n and m of LR-SPO D ± 1 placing
two spin defects in a wave function of LR-SPO D, one in
a site ni and the other in a site mj, with n+ i+m+ j =
odd.

Now, half-filled excited states (other than the dn − 1
singlets orthogonal to the ground state) or even slightly
doped states are analysed via topological spin defects.
There are different types of excitations conceivable from
a Maximally-spin-paired ground state. For instance, pre-
serving half filling (one electron per site), there are pri-
marily spin excitations. In this case, two topological spin
defects, one in an A site and the other in a B site, are ob-
tained by breaking one SP to form a triplet state. Away
from half filling, removing (adding) one electron produces
a vacant (doubly-occupied) site and the ladder becomes
a doublet, with two sites, again one in an A site and
the other in a B site, that cannot be SP. In this case
hopping terms must be retained in the Hamiltonian and
the so-called t-J model applies. Thence, the doublet is a
weighted superposition of configurations with a single spin
not SP and a vacant (doubly-occupied) site. Either a va-
cancy or a doubly-occupied site may also be assimilated
to a topological spin defect, although there is no spin asso-
ciated with them. Then, away from half filling, it may be
conceivable a local region limited by two vacant (doubly-
occupied) sites, or even a vacant (doubly-occupied) site
and a single non-SP spin (provided that the doping is not
so strong as to preclude a maximally-spin-paired ground
state). Therefore, there are low-energy spin and charge ex-
citations. Still, going up in the hierarchy of Hamiltonians,
the Hubbard or even a more general Hamiltonian has to
be considered. In this case, still another type of excitations
(though presumably of higher energy if a Heisenberg-like
Hamiltonian is assumed to govern the lowest-lying region
of the spectrum) can be produced relaxing the single-
occupancy constrain. This leads to the ionic states, i.e.
states with at least a couple of sites, one doubly occupied
and the other empty. Therefore, the couple of spin defects,
associated to an excitation above a Maximally spin-paired
state ΨD, are limiting a local region of LR-SPO D ± 1.

When w = odd and D = 0 (D = 1), there can be local
regions with D = ±1 (D = 0, 2). Then, since subspaces D
= 0 and D = 1 are degenerate, it is possible to have a lo-
cal region with identical per site energy inside and outside
the local region. In this case the topological spin defects
limiting the local region are not confined, though it may
happen that they attract one another (with an ordinary
short-range potential). Two conclusions can be drawn
from this result. First, for the half filling case, triplets with
the two spin defects very far apart from one another are
possible. Although breaking a singlet does cost some en-
ergy (due to contribution of the diagonal terms), there is a
gain in kinetic energy (off-diagonal terms contributions),
since (for w = odd) the two spins are not confined and can
move independently. Consequently, a gapless triplet spec-

trum is not inconsistent with the results of this work. This
feature can be understood as a generalisation to any odd-
legged spin- 1

2 antiferromagnetic ladders of Lieb, Shultz,
and Mattis theorem [13,14] holding for one-dimensional
systems. Second, away from half filling, removing (adding)
an electron to the system yields a non-confined pair of
sites, one being a vacant (doubly-occupied) site and the
other a non-SP site. It is worth noting that the vacant
(doubly-occupied) site holds the charge, while the non-
SP site holds the up or down spin, leading to charge-spin
separation.

In clear contrast, when w = even, the order parame-
ter of the local region limited by the couple of spin de-
fects is always associated to higher energy per site. This
indicates that the couple of spin defects should remain
as close as possible so confinement is predicted to oc-
cur. Hence, at half filling, the energy difference between
the triplet and the ground state will be finite, and the
w = even ladders are expected to be gapped. Never-
theless, we observe that the energy difference per site
between the lowest lying subspaces, ∆ε, behaves as
∼ w−α, with α ≈ 1.8, i.e. ∆ε decreases faster than 1/w.
Therefore, a lowering of confinement and the closing of the
gap is predicted for increasing values of w. At this point, it
could be argued that an excitation energy lowering can be
achieved by allowing a Bloch superposition of analogous
couples of topological spin defects. However this lowering
is not expected to be as important as to close the gap, at
least for w = 2 [38]. Nevertheles, within the scope of the
present work it is not able to predict the energy order-
ing of the lowest singlet and triplet excited states. Now,
away from half filling, when removing (adding) one elec-
tron the vacant (doubly-occupied) site will be bound to
the non-SP spin, forming a “quasi-particle” with charge
and spin. Again we expect the lowering of the confinement
and the charge-spin separation with increasing values of
w. This quasi-particle is far from being a static vacant
(doubly-occupied) site bound to a static non-SP site. The
hopping term of the t-J Hamiltonian allows the vacant
(doubly-occupied) site to move while the exchange part
mixes up all the doublet VB configurations with the con-
strain of keeping the vacant (doubly-occupied) site and
the non-SP spin close to one another. Therefore, the ap-
propriate wave function must be a weighted superposition
of all possible static configurations in order to benefit from
the hopping contribution to the energy, while lowering the
exchange energy by keeping both the spin and the vacant
(doubly-occupied) site bound. When removing (adding)
two electrons, arguments based on the LR-SPO alone are
not able to decide if the two-holes (two-electrons) state
is described as two quasi-particles or two bound vacant
(doubly-occupied) sites. Nevertheless, we expect the two
vacant (doubly-occupied) sites to be confined to benefit
from the energy lowering due to the hoping term of the
Hamiltonian, as has been pointed out in reference [36], us-
ing numerical results from DMRG techniques on clusters.
Another argument to take into account is the range of the
RVB. Since the two quasi-particles are expected to couple
to a singlet, non-bound quasi-particle would imply a long
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bond, while a short-range RVB is expected for w = even
ladders [18,19].

The above results also apply to open boundary con-
ditions along the L direction. In this case, no pairing is
expected to the left of rung n = 1, and to the right of
rung n = L. Then, open boundary conditions determine
the long-range order parameter to be D = 0, with a pair
of spin defects still delimiting a D = 1 fragment, which
is degenerate with that of D = 0 solely for w = odd,
so results above still apply. Furthermore, if the boundary
conditions are so that would force an order parameter of
energy εr(w,D) (εr(w, b −D)), D 6= b, we expect that a
state with D− b+ 1 spin defects located close to each end
of the ladder, these defects limiting an extended area of
resonance energy per site εr(w, b), would be favoured.

The results of the present work relay on two condi-
tions. First, the bipartitioning condition, which allows to
establish the LR-SPO. Second, the energy ordering given
by equation (34). This energy ordering is valid when the
dominant part of the Hamiltonian is the isotropic sin-1/2
Heisenberg Hamiltonian. It might happen that the bipar-
titioning condition is not fulfilled and/or the corrections
away from the isotropic spin-1/2 Heisenberg Hamiltonian
are as important as the energy ordering is not that of
equation (34), then the above discussion will not apply.

6 Conclusions

Identifying a LR-SPO and understanding energy ordering
and degeneracy among RVB wave functions, as well as the
discontinuities in the LR-SPO introduced by topological
spin defects, allow a general and systematic explanation of
the differences between even and odd ladders. It provides
an intuitive understanding of the physics of spin ladders
in general. In particular, for odd leg ladders

1) a doubly degenerate ground state, breaking transla-
tional symmetry, is obtained;

2) a gapless triplet spectrum is consistent with the results
of the present work;

3) a simple understanding of the deconfinement of spin
excitations as well as charge-spin separation is pro-
vided.

On the contrary, for small w = even ladders

1) a non degenerate ground state is obtained;
2) triplet spin excitations are found to be gaped;
3) a simple understanding of the confinement of spin ex-

citations is provided;
4) a lowering of the confinement and the closing of the

gap is predicted for increasing values of w.

The author acknowledges valuable discussions with D.J.
Klein. This research was supported by the DGICYT (project
PB95-0884).

Appendix: Dimer covering counting

Let us analyse from a local point of view the dimer-cover-
ing singlets. We can identify a dimer-covering local state,
|enI), I ranging, according to which legs have an arrow
across the fn boundary. The direction of any arrow is fixed
by n and the leg number. Then, it can be seen that there
are 2w different local states for each boundary, which can
be classified according to the value of Dn, |eDnI). The lo-
cal states of position n + 1 are mirror images of those of
position n.

A dimer-covering-counting matrix, Tn, is defined as

(en−1I |Tn|enJ) =
{

1, |enJ) can succeed |en−1I)
0, otherwise. (A.1)

Then, the number of dimer-covering states in a HwD sub-
space is

n(w,D) =
∑
eD0I

(eD0I |T1T2 . . . TL|eD0I). (A.2)

Since for any dimer-covering singlet Dn−1 = Dn+1,
TnTn+1 is a block-diagonal symmetric matrix that does
not depend on n (apart from the direction of the arrows
in the local states that it relates) we can omit the sub-
index. For L → ∞, the highest eigenvalue Λ2

wD of the D
block T 2

D dominates, and

n(w,D) ≈ ΛLwD. (A.3)
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